

Study of transverse single-spin asymmetries in heavy flavor production in p+pcollisions using the PHENIX Forward Vertex Detector

22nd International Spin Symposium Jeongsu Bok (New Mexico State University) for the PHENIX collaboration

RHIC

The world's only machine capable of colliding high-energy beams of polarized protons, and a unique tool for exploring the proton's spin. Also studying collisions of polarized protons with nuclei: p+Aland p+Au

PHENIX experiment

Pioneering High Energy Nuclear Interaction experiement

Muon Spectrometers $1.2 < |\eta| < 2.4$ FVTX+MUTR+MUID+RPC

Transverse Spin with Open Heavy Flavor

Large Single Spin Asymmetries (SSA) were observed in meson production in the forward direction in p+p collisions at center-of-mass energies from 7.7 GeV to 200 GeV:

Mechanisms for A_N

	Initial State	Final State
Transverse Momentum Dependent function approach	Sivers mechanism D. Sivers, PR D41 (1990) 83; D43 (1991) 261 $A_N \propto f_T^q(x,k_\perp^2) \cdot D_q^h(z)$ Siver's Effect (PDF) Proton spin and quark k_T correlation	Collins mechanism John Collins, Nucl Phys B396 (1993) 161 $A_N \propto \delta q(x) \cdot H_1^\perp(z_2, \overline{k}_\perp^2)$ Transversity (PDF) Collin's Effect (FF) S Proton spin and quark spin correlation Quark spin and hadron \mathbf{k}_{T} correlation
Collinear Factorization		Twist-3 fragmentation $p^{\uparrow}(3) \otimes f_{b/p(2)} \otimes D_{h/c(2)}$
k⊥ is integrated → represent integrated spin dependence of the partons transverse motion	·	$f_{p^{\uparrow}(2)} \otimes f_{b/p(3)} \otimes D_{h/c(2)}$ $f_{b/p^{\uparrow}(2)} \otimes f_{b/p(2)} \otimes D_{h/c(3)}$, Twist-3 fragmentation function \hat{H} is related to the k_{\perp} -moment of the TMD Collins function $H_1^{\perp h/q1}$ as $\hat{H}^{h/q}(z) = z^2 \int d^2\vec{k}_{\perp} \frac{\vec{k}_{\perp}^2}{2M_{\tau}^2} H_1^{\perp h/q}(z, z^2\vec{k}_{\perp}^2)$

The TMD approach needs two momentum scales and is therefore used in SIDIS and DY, while the collinear approach needs only one momentum scale and is therefore used in inclusive p+p A_N 's

Heavy Flavor (D/B meson) production is an ideal tool for investigating gluon distribution. A_N in heavy flavor production is sensitive to tri-gluon correlations by using the twist-3 collinear factorization framework

Z. Kang, J. Qiu, W. Vogelsang, F. Yuan, PRD78:114013 (2008) Y. Koike, S. Yoshida PRD84:014026 (2011)

Open Heavy Flavor A_N Analysis – s/b ratio

 $N_{HF} = N_{Incl}/\varepsilon_{trig} - N_{DM} - N_{PH} - N_{J/\psi \to \mu}$ In order to estimate the light hadron background (N_{DM}, N_{PH}), a hadron cocktail method was used.

• N_{DM} : Decay muons from π^{\pm} and K^{\pm} are the dominant background p_T <5 GeV/c. It shows a linear dependency on z_{vtx} • N_{PH}: Punch-through hadron background becomes larger at $p_{T}>5$ GeV/c, can be estimated by matching the p_{T} distribution of stopped hadrons at the MuID Gap3

• $N_{J/\psi \to \mu}: J/\psi \to \mu$ decay is relatively small at low p_T region, ~20% of N_{HF} at $p_T>3GeV/c$

Open Heavy Flavor A_N Analysis - PYTHIA

- We measured A_N (openHF $\rightarrow \mu$) in muon p_T , x_F bin
- PYTHIA simulation to estimate p_T , x_F of parent charm hadron (mostly D meson) for the μ^{\pm} kinematic region 1.25<p_ (μ^{\pm})<5.0, 0.0<|x_F(μ^{\pm})|<0.2 and $1.4 < |y(\mu^{\pm})| < 2.0$ corresponding to this analysis
- gluon fusion is the dominant(91%) process in this PYTHIA simulation

 p_{T} and x_{E} distributions of parent charm hadrons in PYTHIA simulation show strong correlation between charm hadron and muon

gluon Bjorken x distribution for charm hadron $\rightarrow \mu^{\pm}$ from PYTHIA simulation for each $p_T(\mu)$ and $x_F(\mu)$ bin

Open Heavy Flavor A_N Analysis – Asymmetry

P: polarization

• ϕ_i : azimuthal angle of each track

• crosscheck of A_N by fitting $A_N \cos(\phi_i)$ for

• A_N^{HF} : Muons from Heavy Flavor

background, and $D/B \rightarrow \mu$ signal

Each A_N value maximizing the Log \mathcal{L} is the final A_N

 $A_{N}(\phi) = \frac{\sigma^{\uparrow\uparrow}(\phi) + \sigma^{\uparrow\downarrow}(\phi) - \sigma^{\downarrow\uparrow}(\phi) - \sigma^{\downarrow\downarrow}(\phi)}{\sigma^{\uparrow\uparrow}(\phi) + \sigma^{\uparrow\downarrow}(\phi) + \sigma^{\downarrow\uparrow}(\phi) + \sigma^{\downarrow\downarrow}(\phi)} = \frac{1}{P} \cdot \frac{N^{\uparrow\uparrow}(\phi) + R_{1} \cdot N^{\uparrow\downarrow}(\phi) - R_{2} \cdot N^{\downarrow\uparrow} - R_{3} \cdot N^{\downarrow\downarrow}}{N^{\uparrow\uparrow}(\phi) + R_{1} \cdot N^{\uparrow\downarrow}(\phi) + R_{2} \cdot N^{\downarrow\uparrow} + R_{3} \cdot N^{\downarrow\downarrow}}$

• A_N^{incl} : MUID Gap4 tracks : the light hadron background, $J/\psi \rightarrow \mu$

• A_N^h : MUID Gap3 tracks are stopped (light) hadron

 f_h : fraction of the light hadron background

• $A_N^{J/\psi \to \mu}: J/\psi \to \mu$ contribution (Phys. Rev. D 85, 092004(2012))

Scale uncertainty: 3.3% (not shown)

calculated by toy simulation and $A_N^{J/\psi}$ (Phys. Rev. D86,099904(2012))

Maximum Likelihood Method

$$\mathcal{L} = \prod (1 \pm P \cdot A_N cos(\phi_i))$$

$$\log \mathcal{L} = \sum \log(1 \pm P \cdot A_N cos(\phi_i))$$

$$\sigma^2(A_N) = (-\frac{\partial^2 \mathcal{L}}{\partial A_N^2})^{-1}$$

$$A_N^{HF} = \frac{A_N^{incl} - f_h \cdot A_N^h - f_{J/\psi} \cdot A_N^{J/\psi \to \mu}}{1 - f_h - f_{J/\psi}}$$

$$\delta A_N^{HF} = \frac{\sqrt{(\delta A_N^{incl})^2 + f_h^2 \cdot (\delta A_N^h)^2 + f_{J/\psi}^2 \cdot (\delta A_N^{J/\psi \to \mu})^2}}{1 - f_h - f_{J/\psi}}$$

• $f_{J/\psi}$: fraction of J/ψ background $p+p \rightarrow \mu^-+X$ at $\sqrt{s} = 200 \text{ GeV}$ Asymmetries from 2012, 200 **1.4<|η|<1.9** GeV RHIC *p*+*p* data **PH*ENIX** 1.0<p_{_}<5.0 GeV/c preliminary $(\mathcal{L}_{int}=9.2\text{pb}^{-1}, P_{Blue}=64\%, P_{Yellow}=59\%)$ were studied for both **■** Syst. Uncertainty charges, will be released very soon. <p_> = 2.4, 1.4, 1.4, 2.4 GeV/c

Further study – c/b separation with FVTX

•The Forward Silicon Vertex Detector (FVTX) covers $1.2 < |\eta| < 2.4 \ 2\pi \text{ in } \phi$, $18.5 \ \text{cm} < |z| < 38 \ \text{cm}$ • 4 disks(3 large, 1 small) per arm(N,S), 48 Modules per disk

• 3.75° per half module/column, 75 μ m radial pitch

momentum-dependent resolution study with stopped hadrons

FVTX-MuTr matching and DCA_R requirements remove background of secondary particles from the back of the absorber

2015 p+p data: $\mathcal{L}_{int}=50pb^{-1}$ (5x statistics of 2012 *p*+*p* data) More statistics in A_N^h with new trigger and

• 2015 First polarized p^{\uparrow} +A run : p^{\uparrow} +Au, p^{\uparrow} +Al c/b separation will allows us to study A_N for charm and bottom separately

MUTR-FVTX tracking

- DCA_R (Distance of Closest Approach, R) reconstructed vertex projected on muon p_⊤ direction (FVTX has better resolution onto R direction)
- Prompt particles affected only by DCA_R resolution.
- Decays from HF produce additional asymmetric tails.
- Positive DCA_R tail suppressed because of FVTX acceptance.

